The amount of waste generated by the construction sector underscores an urgent need for embracing circularity — a sustainable model that aims to minimize waste and maximize material efficiency through recovery and reuse — in the built environment: 600 million tons of construction and demolition waste was produced in the United States alone in 2018, with 820 million tons reported in the European Union, and an excess of 2 billion tons annually in China.
This significant resource loss embedded in our current industrial ecosystem marks a linear economy that operates on a “take-make-dispose” model of construction; in contrast, the “make-use-reuse” approach of a circular economy offers an important opportunity to reduce environmental impacts.
A team of MIT researchers has begun to assess what may be needed to spur widespread circular transition within the built environment in a new open-access study that aims to understand stakeholders’ current perceptions of circularity and quantify their willingness to pay.
“This paper acts as an initial endeavor into understanding what the industry may be motivated by, and how integration of stakeholder motivations could lead to greater adoption,” says lead author Juliana Berglund-Brown, PhD student in the Department of Architecture at MIT.
Considering stakeholders’ perceptions
Three different stakeholder groups from North America, Europe, and Asia — material suppliers, design and construction teams, and real estate developers — were surveyed by the research team that also comprises Akrisht Pandey ’23; Fabio Duarte, associate director of the MIT Senseable City Lab; Raquel Ganitsky, fellow in the Sustainable Real Estate Development Action Program; Randolph Kirchain, co-director of MIT Concrete Sustainability Hub; and Siqi Zheng, the STL Champion Professor of Urban and Real Estate Sustainability at Department of Urban Studies and Planning.
Despite growing awareness of reuse practice among construction industry stakeholders, circular practices have yet to be implemented at scale — attributable to many factors that influence the intersection of construction needs with government regulations and the economic interests of real estate developers.
The study notes that perceived barriers to circular adoption differ based on industry role, with lack of both client interest and standardized structural assessment methods identified as the primary concern of design and construction teams, while the largest deterrents for material suppliers are logistics complexity, and supply uncertainty. Real estate developers, on the other hand, are chiefly concerned with higher costs and structural assessment.
Yet encouragingly, respondents expressed willingness to absorb higher costs, with developers indicating readiness to pay an average of 9.6 percent higher construction costs for a minimum 52.9 percent reduction in embodied carbon — and all stakeholders highly favor the potential of incentives like tax exemptions to aid with cost premiums.
Next steps to encourage circularity
The findings highlight the need for further conversation between design teams and developers, as well as for additional exploration into potential solutions to practical challenges. “The thing about circularity is that there is opportunity for a lot of value creation, and subsequently profit,” says Berglund-Brown. “If people are motivated by cost, let’s provide a cost incentive, or establish strategies that have one.”
When it comes to motivating reasons to adopt circularity practices, the study also found trends emerging by industry role. Future net-zero goals influence developers as well as design and construction teams, with government regulation the third-most frequently named reason across all respondent types.
“The construction industry needs a market driver to embrace circularity,” says Berglund-Brown, “Be it carrots or sticks, stakeholders require incentives for adoption.”
The effect of policy to motivate change cannot be understated, with major strides being made in low operational carbon building design after policy restricting emissions was introduced, such as Local Law 97 in New York City and the Building Emissions Reduction and Disclosure Ordinance in Boston. These pieces of policy, and their results, can serve as models for embodied carbon reduction policy elsewhere.
Berglund-Brown suggests that municipalities might initiate ordinances requiring buildings to be deconstructed, which would allow components to be reused, curbing demolition methods that result in waste rather than salvage. Top-down ordinances could be one way to trigger a supply chain shift toward reprocessing building materials that are typically deemed “end-of-life.”
The study also identifies other challenges to the implementation of circularity at scale, including risk associated with how to reuse materials in new buildings, and disrupting status quo design practices.
“Understanding the best way to motivate transition despite uncertainty is where our work comes in,” says Berglund-Brown. “Beyond that, researchers can continue to do a lot to alleviate risk — like developing standards for reuse.”
Innovations that challenge the status quo
Disrupting the status quo is not unusual for MIT researchers; other visionary work in construction circularity pioneered at MIT includes “a smart kit of parts” called Pixelframe. This system for modular concrete reuse allows building elements to be disassembled and rebuilt several times, aiding deconstruction and reuse while maintaining material efficiency and versatility.
Developed by MIT Climate and Sustainability Consortium Associate Director Caitlin Mueller’s research team, Pixelframe is designed to accommodate a wide range of applications from housing to warehouses, with each piece of interlocking precast concrete modules, called Pixels, assigned a material passport to enable tracking through its many life cycles.
Mueller’s work demonstrates that circularity can work technically and logistically at the scale of the built environment — by designing specifically for disassembly, configuration, versatility, and upfront carbon and cost efficiency.
“This can be built today. This is building code-compliant today,” said Mueller of Pixelframe in a keynote speech at the recent MCSC Annual Symposium, which saw industry representatives and members of the MIT community coming together to discuss scalable solutions to climate and sustainability problems. “We currently have the potential for high-impact carbon reduction as a compelling alternative to the business-as-usual construction methods we are used to.”
Pixelframe was recently awarded a grant by the Massachusetts Clean Energy Center (MassCEC) to pursue commercialization, an important next step toward integrating innovations like this into a circular economy in practice. “It’s MassCEC’s job to make sure that these climate leaders have the resources they need to turn their technologies into successful businesses that make a difference around the world,” said MassCEC CEO Emily Reichart, in a press release.
Additional support for circular innovation has emerged thanks to a historic piece of climate legislation from the Biden administration. The Environmental Protection Agency recently awarded a federal grant on the topic of advancing steel reuse to Berglund-Brown — whose PhD thesis focuses on scaling the reuse of structural heavy-section steel — and John Ochsendorf, the Class of 1942 Professor of Civil and Environmental Engineering and Architecture at MIT.
“There is a lot of exciting upcoming work on this topic,” says Berglund-Brown. “To any practitioners reading this who are interested in getting involved — please reach out.”
The study is supported in part by the MIT Climate and Sustainability Consortium.