When surgeons repair tissues, they’re currently limited to mechanical solutions like sutures and staples, which can cause their own damage, or meshes and glues that may not adequately bond with tissues and can be rejected by the body.
Now, Tissium is offering surgeons a new solution based on a biopolymer technology first developed at MIT. The company’s flexible, biocompatible polymers conform to surrounding tissues, attaching to them in order to repair torn tissue after being activated using blue light.
“Our goal is to make this technology the new standard in fixation,” says Tissium co-founder Maria Pereira, who began working with polymers as a PhD student through the MIT Portugal Program. “Surgeons have been using sutures, staples, or tacks for decades or centuries, and they’re quite penetrating. We’re trying to help surgeons repair tissues in a less traumatic way.”
In June, Tissium reached a major milestone when it received marketing authorization from the Food and Drug Administration for its non-traumatic, sutureless solution to repair peripheral nerves. The FDA’s De Novo marketing authorization acknowledges the novelty of the company’s platform and enables commercialization of the MIT spinout’s first product. It came after studies showing the platform helped patients regain full flexion and extension of their injured fingers or toes without pain.
Tissium’s polymers can work with a range of tissue types, from nerves to cardiovascular and the abdominal walls, and the company is eager to apply its programmable platform to other areas.
“We really think this approval is just the beginning,” Tissium CEO Christophe Bancel says. “It was a critical step, and it wasn’t easy, but we knew if we could get the first one, it would begin a new phase for the company. Now it’s our responsibility to show this works with other applications and can benefit more patients.”
From lab to patients
Years before he co-founded Tissium, Jeff Karp was a postdoc in the lab of MIT Institute Professor Robert Langer, where he worked to develop elastic materials that were biodegradable and photocurable for a range of clinical applications. After graduation, Karp became an affiliate faculty member in the Harvard-MIT Program in Health Sciences and Technology. He is also a faculty member at Harvard Medical School and Brigham and Women’s Hospital. In 2008, Pereira joined Karp’s lab as a visiting PhD student through funding from the MIT Portugal Program, tuning the polymers’ thickness and ability to repel water to optimize the material’s ability to attach to wet tissue.
“Maria took this polymer platform and turned it into a fixation platform that could be used in many areas in medicine,” Karp recalls. “[The cardiac surgeon] Pedro del Nido at Boston Children’s Hospital had alerted us to this major problem of a birth defect that causes holes in the heart of newborns. There were no suitable solutions, so that was one of the applications we began working on that Maria led.”
Pereira and her collaborators went on to demonstrate they could use the biopolymers to seal holes in the hearts of rats and pigs without bleeding or complications. Bancel, a pharmaceutical industry veteran, was introduced to the technology when he met with Karp, Pereira, and Langer during a visit to Cambridge in 2012, and he spent the next few months speaking with surgeons.
“I spoke with about 15 surgeons from a range of fields about their challenges,” Bancel says. “I realized if the technology could work in these settings, it would address a big set of challenges. All of the surgeons were excited about how the material could impact their practice.”
Bancel worked with MIT’s Technology Licensing Office to take the biopolymer technology out of the lab, including patents from Karp’s original work in Langer’s lab. Pereira moved to Paris upon completing her PhD, and Tissium was officially founded in 2013 by Pereira, Bancel, Karp, Langer, and others.
“The MIT and Harvard ecosystems are at the core of our success,” Pereira says. “From the get-go, we tried to solve problems that would be meaningful for patients. We weren’t just doing research for the sake of doing research. We started in the cardiovascular space, but we quickly realized we wanted to create new standards for tissue repair and tissue fixation.”
After licensing the technology, Tissium had a lot of work to do to make it scalable commercially. The founders partnered with companies that specialize in synthesizing polymers and created a method to 3D print a casing for polymer-wrapped nerves.
“We quickly realized the product is a combination of the polymer and the accessories,” Bancel says. “It was about how surgeons used the product. We had to design the right accessories for the right procedures.”
The new system is sorely needed. A recent meta-analysis of nerve repairs using sutures found that only 54 percent of patients achieved highly meaningful recovery following surgery. By not using sutures, Tissium’s flexible polymer technology offers an atraumatic way to reconnect nerves. In a recent trial of 12 patients, all patients that completed follow up regained full flexion and extension of their injured digits and reported no pain 12 months after surgery.
“The current standard of care is suboptimal,” Pereira says. “There are variabilities in the outcome, sutures can create trauma, tension, misalignment, and all that can impact patient outcomes, from sensation to motor function and overall quality of life.”
Trauma-free tissue repair
Today Tissium has six products in development, including one ongoing clinical trial in the hernia space and another set to begin soon for a cardiovascular application.
“Early on, we had the intuition that if this were to work in one application, it would be surprising if it didn’t work in many other applications,” Bancel says.
The company also believes its 3D-printed production process will make it easier to expand.
“Not only can this be used for tissue fixation broadly across medicine, but we can leverage the 3D printing method to make all kinds of implantable medical devices from the same polymeric platform,” Karp explains. “Our polymers are programmable, so we can program the degradation, the mechanical properties, and this could open up the door to other exciting breakthroughs in medical devices with new capabilities.”
Now Tissium’s team is encouraging people in the medical field to reach out if they think their platform could improve on the standard of care — and they’re mindful that the first approval is a milestone worth celebrating unto itself.
“It’s the best possible outcome for your research to generate not just a paper, but a treatment with potential to improve the standard of care along with patients’ lives,” Karp says. “It’s the dream, and it’s an incredible feeling to be able to celebrate this with all the collaborators that have been involved along the way.”
Langer adds, “I agree with Jeff. It’s wonderful to see the research we started at MIT reach the point of FDA approval and change peoples’ lives.”